Category Archives: spintronics

Chameleon magnets: ability to switch magnets ‘on’ or ‘off’ could revolutionize computing

From PhysOrg.com:

In their Science commentary, Zutic and Cerne write that chameleon magnets could “help us make more versatile transistors and bring us closer to the seamless integration of memory and logic by providing smart hardware that can be dynamically reprogrammed for optimal performance of a specific task.”

Continued

Advertisements

Leave a comment

Filed under spintronics

Scientists achieve high temperature milestone in silicon spintronics

From PhysOrg.com:

Researchers in the Materials Science and Technology division of the Naval Research Laboratory have recently demonstrated electrical injection, detection and precession of spin accumulation in silicon, the cornerstone material of modern device technology, at temperatures up to 225 degrees Celsius.

These results provide the first demonstration that spin accumulation in Si is viable as a basis for practical devices which meet the operating temperatures specified for commercial (85°C), industrial (100°C) and military (125°C) applications. This is a key enabling step for developng devices which rely on electron spin rather than electron charge, an approach known as semiconductor spintronics that is expected to provide devices with higher performance, lower power consumption and less heat dissipation.

Continued

Leave a comment

Filed under spintronics

Enhancing the magnetism

From PhysOrg.com:

“The nation that controls magnetism will control the universe,” famed fictional detective Dick Tracy predicted back in 1935. Probably an overstatement, but there’s little doubt the nation that leads the development of advanced magnetoelectronic or “spintronic” devices is going to have a serious leg-up on its Information Age competition. A smaller, faster and cheaper way to store and transfer information is the spintronic grand prize and a key to winning this prize is understanding and controlling a multiferroic property known as “spontaneous magnetization.”

Continued

Leave a comment

Filed under spintronics

Could the combination of general relativity and quantum mechanics lead to spintronics?

From PhysOrg.com:

Maekawa and his colleagues decided that studying how to use mechanical rotation to direct spin current could be advantageous in the development of spintronic devices that scientists think could eventually replace silicon-based electronics. “We found that we needed to add general relativity to the equation,” Maekawa says. “Dirac included special relativity, but general relativity was needed as well. We combined the two Einstein theories, and added them to the theory of quantum mechanics. This way, we added mechanical rotation to the quantum equation.”

Continued

Leave a comment

Filed under general relativity, quantum mechanics, spintronics

Curved carbon for electronics of the future (Spintronics)

From PhysOrg.com:

A new scientific discovery could have profound implications for nanoelectronic components. Researchers from the Nano-Science Center at the Niels Bohr Institute, University of Copenhagen, in collaboration with Japanese researchers, have shown how electrons on thin tubes of graphite exhibit a unique interaction between their motion and their attached magnetic field – the so-called spin. The discovery paves the way for unprecedented control over the spin of electrons and may have a big impact on applications for spin-based nanoelectronics. The results have been published in the prestigious journal Nature Physics.

Continued

Leave a comment

Filed under electromagnetic technology, spintronics