Category Archives: nanotechnology

Hard… soft… New nanomaterial switches properties

From PhysOrg.com:

A world premiere: a material which changes its strength, virtually at the touch of a button. This transformation can be achieved in a matter of seconds through changes in the electron structure of a material; thus hard and brittle matter, for example, can become soft and malleable. What makes this development revolutionary, is that the transformation can be controlled by electric signals. This world-first has its origins in Hamburg. Jörg Weißmüller, a materials scientist at both the Technical University of Hamburg and the Helmholtz Center Geesthacht, has carried out research on this groundbreaking development, working in cooperation with colleagues from the Institute for Metal Research in Shenyang, China.

Continued

Advertisements

Leave a comment

Filed under metamaterials, nanotechnology

Largest biochemical circuit built out of small synthetic DNA molecules (proto-nanocomputer)

From PhysOrg.com:

To build their circuits, the researchers used pieces of DNA to make so-called logic gates—devices that produce on-off output signals in response to on-off input signals. Logic gates are the building blocks of the digital logic circuits that allow a computer to perform the right actions at the right time. In a conventional computer, logic gates are made with electronic transistors, which are wired together to form circuits on a silicon chip. Biochemical circuits, however, consist of molecules floating in a test tube of salt water. Instead of depending on electrons flowing in and out of transistors, DNA-based logic gates receive and produce molecules as signals. The molecular signals travel from one specific gate to another, connecting the circuit as if they were wires.

Continued

Leave a comment

Filed under biotechnology, nanocomputers, nanotechnology

Single molecule electronics and ‘chemical soldering’

From PhysOrg.com:

Single molecule electronics is a division of nanotechnology utilizing single molecules as electronic components and its study has the ultimate goal of reducing the size of common electrical circuits. Since 1974, when Mark Ratner and Arieh Aviram from IBM first described how a single molecule was capable of working as a diode in passing current in one direction, research has moved forward in trying to develop a way to use single molecule electronics.

Continued

Leave a comment

Filed under nanotechnology, transistors

Exotic behavior when mechanical devices reach the nanoscale

From PhysOrg.com:

Most mechanical resonators damp (slow down) in a well-understood linear manner, but ground-breaking work by Prof. Adrian Bachtold and his research group at the Catalan Institute of Nanotechnology has shown that resonators formed from nanoscale graphene and carbon nanotubes exhibit nonlinear damping, opening up exciting possibilities for super-sensitive detectors of force or mass.

The finding has profound consequences. Damping is central to the physics of nanoelectromechanical resonators, lying at the core of quantum and sensing experiments. Therefore many predictions that have been made for nanoscale electro-mechanical devices now need to be revisited when considering nanotube and graphene resonators.

Continued

Leave a comment

Filed under nanotechnology, quantum measurement

Electromechanics also operates at the nanoscale

From PhysOrg.com:

What limits the behaviour of a carbon nanotube? This is a question that many scientists are trying to answer. Physicists at University of Gothenburg, Sweden, have now shown that electromechanical principles are valid also at the nanometre scale. In this way, the unique properties of carbon nanotubes can be combined with classical physics – and this may prove useful in the quantum computers of the future.

Continued

Leave a comment

Filed under nanotechnology

Graphene optical modulators could lead to ultrafast communications

From PhysOrg.com:

The team of researchers, led by UC Berkeley engineering professor Xiang Zhang, built a tiny optical device that uses graphene, a one-atom-thick layer of crystallized carbon, to switch light on and off. This switching ability is the fundamental characteristic of a network modulator, which controls the speed at which data packets are transmitted. The faster the data pulses are sent out, the greater the volume of information that can be sent. Graphene-based modulators could soon allow consumers to stream full-length, high-definition, 3-D movies onto a smartphone in a matter of seconds, the researchers said.

Continued

Leave a comment

Filed under communications technology, nanotechnology, photonics

Single atom stores quantum information

From PhysOrg.com:

A data memory can hardly be any smaller: researchers working with Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have stored quantum information in a single atom. The researchers wrote the quantum state of single photons, i.e. particles of light, into a rubidium atom and read it out again after a certain storage time. This technique can be used in principle to design powerful quantum computers and to network them with each other across large distances.

Continued

Leave a comment

Filed under memory technology, nanotechnology, quantum communications, quantum measurement, quantum mechanics